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Abstract: This study proposes a competitive model using the Box–Jenkins approach to implement a Box–Jenkins
ARIMA-GARCH model in order to improve financial forecasting. Differing from previous studies, we consider
optimizing the lagged terms, which assist in capturing the relationships more properly. The competitive model
is then used to forecast the stock market index in Taiwan. This study conducts out-of-sample forecasting and
compares the root mean square errors (RMSEs) against previous studies. The results show that the competitive
model outperformed in terms of both RMSEs and consistency.
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1. Introduction

Box–Jenkins ARIMA1 is a simulation of regressive time series models that has become widely utilized in recent
years. Many kinds of Box–Jenkins ARIMA have been developed, including the ARMA approach (Rojas et al.,
2008; Wang and Lu, 2006; Hwarng, 2001), the ARIMA approach (Hikichi et al., 2017; Petrevska, 2017), seasonal
ARIMA (Gharbi et al., 2011; Egrioglu et al., 2009; Tsui et al., 2014), the bivariate model or ARIMA transfer
(Sharma and Khare, 2001; Sun and Koch, 2001; Gröger and Rumohr, 2006), and hybrid models (Babu and Reddy,
2014; Egrioglu et al., 2009; Pong et al., 2004). Moreover, some studies have shown interest in the partitioning

1ARIMA names as autoregressive integrated moving average that is proposed by (Asteriou and Stephen, 2011).
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of the ARIMA family to improve forecasting results (Gray, 1996; Blazsek and Mendoza, 2016; Zhang, 2003;
Kambouroudis et al., 2016). The Box–Jenkins ARIMA model (Box and Jenkins, 1976) has been applied to forecast
linear time series for different domains, such as tourism demand (Petrevska, 2017), the number of passengers
(Egrioglu et al., 2009), the exchange rate (Pong et al., 2004), CO2 emissions (Paravantis and Georgakellos, 2007),
and high-bandwidth networks (Yoo and Sim, 2016). For forecasting, many researchers have conducted new models
that have outperformed their counterparts (Chen, 1996; Song, 1999; Gallant et al., 1999; Alizadeh et al., 2002;
Huarng and Yu, 2006; Huarng et al., 2007; Yu and Huarng, 2008; 2010; Granger and Newbold, 1976).

The application of these Box–Jenkins ARIMA models consists of three main steps: identifying I(0) or I(1) (unit
root test and differencing), Box–Jenkins optimization, and training linear and non-linear models. Many studies
suggest that a hybrid model should be applied to solve both linear and non-linear approaches. However, this study
uses GARCH(1,1)2 as a solution for non-linear and complex relationships. Moreover, heteroskedasticity is a specific
problem in both time series and statistics (Kristjanpoller and Hernández, 2017; Gray, 1996; Andersen and Bollerslev,
1998; Hakim and McAleer, 2009) and causes biased parameters, which heavily affect the forecasting results. Hence,
this study proposes the Box–Jenkins ARIMA-GARCH model.

For comparison purposes, this study chooses various fuzzy time series models, including first-order models
(Chen, 1996), bivariate models (Yu and Huarng, 2008), multivariate models (Huarng et al., 2007), and hybrid models
(Huarng and Yu, 2006; Yu and Huarng, 2010). In these studies, the fuzzy models do not handle the lagged terms.
Therefore, the competitive model is expected to outperform these models.

The contributions of this study are as follows. First, the competitive model successfully builds a time series
approach to solve both the linearity and non-linearity of the data with optimizing lagged terms, and presents
good forecasting results. Second, the application of the Box–Jenkins approach can better capture the lagged term
relationships and thus provide a better forecast. Third, optimizing the lagged terms allows the competitive model
(a univariate model) to compete with a bivariate model.

This study proposes a competitive model using the Box–Jenkins approach to implement a Box–Jenkins
ARIMA-GARCH model to improve forecasting. Toward that end, the remainder of this paper consists of the
following sections. Section 2 reviews the concepts of Box–Jenkin ARIMA, fuzzy time series, and neural network (NN)
models. Section 3 describes the data and explains the competitive model. Section 4 uses an example to demonstrate
the forecasting analysis. Section 5 compares the performance of the empirical models. Section 6 concludes the paper.

2. Literature Review

2.1. Box–Jenkins ARIMA

ARIMA(p,d,q) is a well-known linear approach that has been applied in many studies in the forecast literature.
Before using ARIMA(p,d,q), the stationarity of the data series (order d) and the order (p,q) should be determined.
The best-suited ARIMA can be validated by Akaike information criterion (AIC). For stock index forecasting, many
researchers suggest that ARIMA be combined with a non-linear approach, because the asymmetric volatility of
the stock index is typically researchers’ target interest (Wang et al., 2012; Mostafa, 2010; Kang and Yoon, 2013).
The Box–Jenkins can optimize p and q choices in the ARIMA equation as:

FD(t, t− 1) = ARp +MAq = Ao +
∑n

p−1
ApD(t− p, t− p− 1) + ept + eqt +

∑n

q−1
Wqet−q. (1)

In ARIMA, the autoregressive series
(∑n

p−1ApD(t− p, t− p− 1)
)
captures the linear trend of data, and the

moving average series
(∑n

q−1Wqet−q

)
captures the linear terms in error. Building a hybrid model, this study

combines the GARCH model with ARIMA to better predict the results of a stock market index, called GARCH(1,1).
2GARCH is the well-known approach named as generalized autoregressive conditional heteroskedasticity.
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This study also uses the applications of the GARCH model, which is provided to duel with sensitiveness,
non-stationarity, and asymmetric volatility series (Engle, 2002). However, various hybrid models have been
employed to solve both linear and non-linear characteristics of the stock index problem (Blazsek and Mendoza, 2016;
Kazem et al., 2013). GARCH(1,1) is one of the most popular methods (Sbrana and Silvestrini, 2013; Kömm and
Küsters, 2015). The square error of ARIMA u2t−1 can be used exogenously, and σ2

t−1 can also be adjusted exogenously
in the GARCH function, as in Equation (2). Hence, GARCH(1,1) can exclude the condition of heteroskedasticity in
the volatility of a stock market index.

σ2
t = αo + α1u

2
t−1 + βσ2

t−1 (2)

2.2. Fuzzy Set Time Series

Fuzzy time series models have been utilized for decades by many researchers. Song and Chissom (1993) proposed
the foundation for fuzzy time series models, including (1) to define the universe of discourse and intervals; (2) to
fuzzify; (3) to establish fuzzy relationships; and (4) to forecast. We use Chen’s (1996) model (referred to as Model 1)
as an example of a first-order model and conduct similar forecasts. The heuristic model integrates the heuristic
to improve a fuzzy time series (Huarng, 2001) and also is conducted as a multivariate model (Huarng et al., 2007)
(referred to as Model 2).

2.3. NN Models

The neural network (NN) is a non-linear technique that is similar to the human brain architecture and is applied
widely in forecasting. The first NN-fuzzy time series in forecasting was suggested by Huarng and Yu (2006) (Model
3). The basic framework uses the most significant degrees of membership for each observation both for in-sample
and out-of-sample forecast when the other ones are ignored, which may affect the outcome. The univariate NN-fuzzy
time series model (Yu and Huarng, 2010) (Model 4), which uses all the degrees of membership to establish a fuzzy
relationship, is a more innovative and complicated model. The bivariate NN-fuzzy time series model (Yu and Huarng,
2008) (Model 5) performs better than a univariate model by using D(TAIFEX3) rather than D(TAIEX4) as the
input to generate a forecast series.

3. Research Method

3.1. Data

This study employed data for the daily closing stock market index of Taiwan, Taiwan Stock Exchange Capitalization
Weighed Stock Index (TAIEX). To facilitate comparisons, the sample size was set to be the same as in Yu and Huarng
(2008) from years 2000 to 2004. To achieve forecasting, a previous study stated the importance of out-of-sample
observations (Martin and Witt, 1989). Observations from January to October were considered as in-sample data
(training sample). This study also used out-of-sample observations for each year, with November to December as the
out-of-sample data (testing sample). Hence, the ratios were consistently 10

12 : 2
12 every year.

3.2. The Competitive Model

We conducted the Box–Jenkins ARIMA-GARCH(1,1) as follows, named as Model 6.

Step 1. Unit root test

Checking for data stationarity is an important step. In the case of stationarity, the TAIEX at time (t − 1)
was directly used to forecast the TAIEX at time (t) by Box–Jenkins ARIMA(p;0;q)-GARCH(1,1). The indirect

3TAIFEX denotes Taiwan Future Exchange, https://www.taifex.com.tw.
4TAIEX denotes Taiwan Capitalization Weighted Stock Index, https://wn.com/taiex/news.
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case implies that Box–Jenkins ARIMA(p;1;q)-GARCH(1,1) was applied to use the TAIEX in first difference at time
(t − 1) and to forecast the difference of the TAIEX at time (t) if the data series exhibited non-stationarity. We used
the augmented Dickey–Fuller (ADF) unit root test to detect data stationarity (Dickey and Fuller, 1979).

Step 2. Difference

Many previous researchers used the differences of a stock market index for prediction by the ARIMA family
(Babu and Reddy, 2014). Hence, the order d is usually set to be 1. Following the unit root results, if first differences
are used as the input series, then the first difference series are calculated by Equation (3):

D(t, t− 1) = stockindext − stockindext−1. (3)

Step 3. Box–Jenkins optimization

The orders p and q were determined by the Box–Jenkins method (Zhang, 2003; Hosking, 1981). Each year’s
data were used to conduct the Box–Jenkins ARIMA (p;d ;q) individually. The orders p and q can be observed by
the trend and correlation analysis of the series. The order p can be picked up from ACF (autocorrelation), and the
order q can be picked up from PACF (partial autocorrelation). The orders p and q were substituted into ARIMA
(p;d ;q) in order to optimize the order by considering the smallest Schwarz information criterion (SIC) and Akaike
information criterion (AIC).

Step 4. Building the competitive model

Heteroskedasticity is a statistical problem that causes a bias parameter. Hence, GARCH(1,1) equation is
usually used to provide the solution for homoskedasticity and to enhance the robustness for the ARIMA family
(Brooks, 2014). The hybrid model is a combination of the optimized ARIMA(p;d ;q) model with GARCH(1,1), due
to its capabilities in handling non-linear relationships. The hybrid simultaneous model is listed as Equation (4)
below, which combines Equations (1) and (2):

FD (t, t− 1) = ARp +MAq = A0 +
∑n

p−1ApD (t− p, t− p− 1) + ept + eqt +
∑n

q−1Wqet−q

ut = ept+qt

σ2
t = αo + α1u

2
t−1 + βσ2

t−1

(4)

Here, FD(t,t − 1) is the forecasted values of the stock market index in differencing at time (t); D(t − p,
t − p − 1) is the autoregressive series at time (t − p); et−q is the moving average series at time (t − q), and ept
and eqt are error terms in the autoregressive series and moving average series, respectively. Thus, ut is the total
error term, and σ2

t is the variance series of heteroskedasticity estimated by the error term of the autoregressive
moving average series.

Step 5. Forecasting

Similar to previous studies, this research takes the backward induction of the difference in forecast values
to result in the forecasted stock market index. The output of the Box–Jenkins ARIMA-GARCH(1,1) model still
forecasts the index (FStockindext). Therefore, the index at time (t − 1) can be calculated as the input of Equation (5):

FStockindext = Stockindext−1 + FD (t, t− 1) (5)

Step 6. Performance evaluation

Following a previous study (Yu and Huarng, 2010), this research also uses root mean square errors (RMSEs) to
compare the performance, as in Equation (6):

RMSE =

√√√√( n∑
i=k+1

(ActualTAIEXt − ForecastTAIEXt)
2

)
/ (n− k) (6)

where there are n observations, including k in-sample and n − k out-of-sample observations.
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4. Forecasting Analysis

We took TAIEX data in the year 2000 as an example to demonstrate the empirical analysis.

Step 1. Unit root test

The null hypothesis of the ADF tests is that TAIEX is non-stationary. We performed this test and rejected the
null hypothesis. The results are shown in Table 1. Here, ARIMA(p;d ;q) was applied by using the differences of
the TAIEX at time (t − 1) as the input to forecast the TAIEX at time (t). The integrated order d was fixed at 1.
The ARIMA (p;1;q) model was thus executed.

2000 2001 2002 2003 2004
TAIEXt 0.2622 −0.8788 −0.8427 −0.7568 −1.6883

D(TAIEXt) −15.75 *** −14.41 *** −15.26 *** −15.05 *** −14.85 ***

*** denotes significance at 99%, ** significance at 95%, and * significance at 90%. Note: The null hypothesis of the
Augmented Dickey–Fuller (ADF) test is that the TAIEX has a unit root.

Table 1 Results of ADF unit root tests.

Step 2. Difference

The stock market index on January 5 was 8849.87, and it was 8756.55 on January 4. Hence,
D(1/5/2000,1/4/2000) = 8849.87 − 8756.55 = 93.32).

Step 3. Box–Jenkins optimization

By using Box–Jenkins methods, the value of order p can be considered as suitable when the autocorrelation
value in the ACF column is observed from the highest |−0.178|(lag p = 18) to the smallest value 0.084 (lag p = 28)
and larger than 0.05. We employed a similar approach with the order q (Table 2). We considered ARIMA(18;1;4,15)
as the most optimized, in which SIC = 12.9664 and AIC = 12.9126.

Model Available order to be chosen as p and q lagged terms (see the full table in Appendix A)

AR(p) 4 13 14 15 18 21 28
−0.163 0.09 0.119 −0.123 −0.178 ** 0.088 0.084

MA(q) 4 13 14 15 18 21 28
−0.168 ** 0.101 0.104 −0.136 ** −0.139 0.085 0.126

Model selection by information criteria

ARIMA family SIC AIC Rank

ARIMA(18;1;4) 12.9674 12.9254 3
ARIMA(18;1;15) 12.9879 12.9458 4
ARIMA(18;1;4,15) 12.9664 12.9126 1
ARIMA(0;1;4,15,18) 12.9686 12.9131 2

*** denotes significance at 99%, ** significance at 95%, and * significance at 90%.

Table 2 Box–Jenkins method optimization and results for the year 2000.

Step 4. Building the competitive model

By using Equation (4), we optimized the error terms ut of both autoregressive series ept and moving average
series (ept) in GARCH(1,1). The new hybrid model, which can solve for heteroskedasticity, is expected to generate a

https://doi.org/10.26870/jbafp.2020.02.014
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better output. We followed Box–Jenkins ARIMA-GARCH(1,1) methods to optimize the forecast model for each
year. Table 3 lists all the results.

Year Best model

2000 ARIMA(18;1;4,15)-GARCH(1,1)
2001 ARIMA(4;1;4,15)-GARCH(1,1)
2002 ARIMA(9;1;4)-GARCH(1,1)
2003 ARIMA(8;1;8)-GARCH(1,1)
2004 ARIMA(29;1;2,15)-GARCH(1,1)

Table 3 Optimized model for each year.

Step 5: Forecasting

As in Equation (4), the closing index on November 1 was 5425.02 and on November 2 it was 5625.08. Employing
the model, the forecast of stock difference (FD(t,t − 1)) was 14.5274 on November 2. Hence, the output of the
model (FStockindext) was computed as 5439.55 for November 2. Table 4 presents the forecasts.

Date(t)
Actual

TAIEX(t)
Inputs Outputs

First difference
series

(D(t, t − 1))

Actual
TAIEX (t − 1)
(Stockindext−1)

Forecast value of stock
market index difference

(FD(t, t − 1))

Forecast
TAIEX (t)

(FStockindext)

11/1/2000 5425.02 −119.16 5544.18 −0.33156 5543.85
11/2/2000 5626.08 201.06 5425.02 14.5274 5439.55
11/3/2000 5796.08 170.00 5626.08 59.2410 5685.32
11/4/2000 5677.30 −118.78 5796.08 13.9798 5810.06
11/6/2000 5657.48 −19.82 5677.30 45.7822 5723.08
11/7/2000 5877.77 220.29 5657.48 0.21743 5657.70
11/8/2000 6067.94 190.17 5877.77 −89.554 5788.22
11/9/2000 6089.55 21.61 6067.94 20.0731 6088.01
11/10/2000 6088.74 −0.81 6089.55 34.4934 6124.04
11/13/2000 5793.52 −295.22 6088.74 −129.906 5958.83
11/14/2000 5772.51 −21.01 5793.52 −136.168 5657.35
11/15/2000 5737.02 −35.49 5772.51 −33.7512 5738.76
11/16/2000 5454.13 −282.89 5737.02 −19.9644 5717.06
11/17/2000 5351.36 −102.77 5454.13 25.2855 5479.42
11/18/2000 5167.35 −184.01 5351.36 −35.5636 5315.80
11/20/2000 4845.21 −322.14 5167.35 11.3685 5178.72
11/21/2000 5103.00 257.79 4845.21 38.9101 4884.12
11/22/2000 5130.61 27.61 5103.00 10.8685 5113.87
11/23/2000 5146.92 16.31 5130.61 48.9828 5179.59
11/24/2000 5419.99 273.07 5146.92 52.0762 5199.00
11/27/2000 5433.78 13.79 5419.99 −124.454 5295.54
11/28/2000 5362.26 −71.52 5433.78 −48.3960 5385.38
11/29/2000 5319.46 −42.80 5362.26 −9.66358 5352.60
11/30/2000 5256.93 −62.53 5319.46 −96.5995 5222.86

Table 4 Forecast from the Box–Jenkins ARIMA-GARCH(1,1) model.

https://doi.org/10.26870/jbafp.2020.02.014
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Step 6. Performance evaluation

For the year 2000, the RMSE of Model 6 was 122.68.

5. Empirical Analysis

We repeated the forecasting for all years and compared the performance of six models in terms of RMSE, as in
Table 5. In the table, the competitive model (Model 6) performed best among all the models, because it had more
years with smaller RMSEs than the other models. To show consistency, the competitive model also outperformed
the other models, because it had more total number of years with smaller RMSEs than each model.

Model 2000 2001 2002 2003 2004
(1) First-order model (Chen, 1996) 176.32 147.84 101.18 74.46 84.28
(2) Multivariate model (Huarng et al., 2007) 154.42 124.02 95.73 70.76 72.35
(3) NN model (Huarng and Yu, 2006) 152 130 84 56 N/A
(4) NN based fuzzy time series (Yu and Huarng, 2010) 149.59 98.31 78.71 58.78 55.91
(5) Bivariate fuzzy time series (Yu and Huarng, 2008) 67 120 69 52 60
(6) The competitive model 122.68 108.62 66.11 55.56 52.99

Table 5 Performance evaluation by root mean square errors (RMSEs). NN: neural network.

The competitive model could capture both the linearity and non-linearity of the data, which is the same as any
hybrid models in previous studies. In the model, the Box–Jenkins approach allows the researcher to optimize the
lagged terms of both autoregressive series and moving average series by minimizing the white noise, which means
that more correct information is taken into consideration. Hence, the forecasting results are expected to improve.
Model 5 (bivariate NN-fuzzy approach), using all the degrees of membership, exhibited good results. The drawback
of taking all the degrees of membership for training and forecasting is that there can be too many fuzzy sets or
inputs for the NN.

6. Conclusion

This study proposes a Box–Jenkins ARIMA-GARCH model as a competitive model to improve forecasting, as
it optimizes the lagged terms of both autoregressive series and moving average series by minimizing the white
noise. Due to the coverage of most optimizing information, the model performed better than many previous studies.
Another advantage of taking the optimized lagged terms is that the competitive model can improve a univariate
model to compete with a bivariate model.

The competitive model can easily expand its function and also calculate fuzzy relationships. Following the
empirical results in this study, the competitive model can solve problems of both linear and non-linear data.
For future work, if other suitable inputs can be observed, then the competitive model can be easily expanded to
bivariate models.
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Appendix A. ACF and PACF of the First Difference of TAIEX in the
Year 2000

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

.|. | .|. | 1 0.037 0.037 0.3763 0.540

.|. | .|. | 2 0.043 0.042 0.8847 0.643

.|. | .|. | 3 0.045 0.042 1.4412 0.696
*|. | *|. | 4 −0.163 −0.168 8.7337 0.068
.|. | .|. | 5 0.016 0.026 8.8085 0.117
.|. | .|. | 6 −0.049 −0.039 9.4727 0.149
.|. | .|. | 7 −0.029 −0.012 9.7123 0.205
.|. | .|. | 8 −0.037 −0.063 10.094 0.259
.|. | .|. | 9 0.009 0.027 10.115 0.341
.|. | .|. | 10 −0.005 −0.017 10.124 0.430
.|. | .|. | 11 0.029 0.030 10.359 0.498
.|. | .|. | 12 −0.004 −0.026 10.364 0.584
.|* | .|* | 13 0.090 0.101 12.654 0.475
.|* | .|* | 14 0.119 0.104 16.722 0.271
*|. | *|. | 15 −0.123 −0.136 21.087 0.134
.|. | .|. | 16 −0.031 −0.050 21.364 0.165
.|. | .|. | 17 −0.045 −0.005 21.964 0.186
*|. | *|. | 18 −0.178 −0.139 31.245 0.027
.|. | .|. | 19 0.016 −0.005 31.324 0.037
.|. | .|. | 20 −0.014 0.008 31.379 0.050
*|. | *|. | 21 −0.088 −0.085 33.673 0.039
.|. | .|. | 22 0.011 −0.035 33.710 0.053
.|. | .|. | 23 −0.045 −0.047 34.319 0.061
.|. | .|. | 24 0.046 0.047 34.951 0.069
.|. | .|. | 25 0.022 −0.012 35.093 0.087
.|. | .|. | 26 −0.007 −0.026 35.108 0.109
.|. | .|. | 27 −0.011 −0.055 35.143 0.135
.|* | .|* | 28 0.084 0.126 37.277 0.113
.|. | .|. | 29 −0.006 0.009 37.289 0.139
.|. | .|. | 30 0.031 0.016 37.574 0.161
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